The east coast of the United States has been slammed with three nor’easters in just eleven days – March 2, March 7, and March 13. The reason for this barrage of storms involves something called the North Atlantic Oscillation (NAO).
Based in the North Atlantic Ocean, this weather pattern is driven by the pressure differences between the semi-permanent Icelandic Low and Azores/Bermuda High. When the pressure difference between these two systems is low, the NAO is said to be in a negative phase. This means the winds of the jet stream are relatively relaxed and cold air from the north can spill down into the eastern US. The positive phase of NAO is characterized by a strong pressure difference between the two areas and a robust jet stream that keeps cold air bottled up in the northern latitudes.
Fluctuating between positive and negative, the strength and duration of these phases vary. Since late February, however, a strong negative phase has been locked in place. With an area of high pressure over Greenland, the jet stream is blocked and therefore dipping southward over the eastern US. As the jet stream is essentially a storm track, this pattern has allowed areas of low pressure to be steered over the warm waters of the Gulf Stream off the eastern seaboard, where they have intensified into nor’easters.
In terms of climate change, the connection between the warming Arctic and the storm track across the mid-latitudes is an active area of research. Sea level rise, however, is clearly amplifying the coastal flooding associated with these powerful storms.