What the Summer Solstice Means

Today is the June Solstice, the first day of summer in the northern hemisphere. The new season officially began at 10:07 UTC, which is 6:07 AM Eastern Daylight Time.

Our astronomical seasons are a product of the tilt of the Earth’s axis – a 23.5° angle – and the movement of the planet around the sun. During the summer months, the northern half of the Earth is tilted toward the sun. This position allows the northern hemisphere to receive the sun’s energy at a more direct angle and produces our warmest temperatures of the year.

Since the winter solstice in December, the arc of the sun’s daily passage across the sky has been getting higher and daylight hours have been increasing. At noon today, the sun will be directly overhead at the Tropic of Cancer, its northernmost position, marking the “longest day” of the year. This observable stop in the sun’s apparent annual journey is where today’s event takes its name. Solstice is a word derived from Latin and means “the sun stands still”.

While today brings us the greatest number of daylight hours  (15 hours and 5 minutes in NYC), it is not the warmest day of the year.  The hottest part of summer typically lags the solstice by a few weeks. This is because the oceans and continents need time to absorb the sun’s energy and warm up – a phenomenon known as seasonal temperature lag.

Earth’s solstices and equinoxes. Image Credit: NASA

How Hail Forms

The thunderstorms of spring and summer are notorious for their powerful winds and heavy rain. However, when strong enough, they can also produce hail.

Hailstones start off as water vapor that is lifted high into the atmosphere by the updraft of a thunderstorm. Rising into cooler air, it condenses and forms water droplets. Once these liquid droplets reach a level where the temperature is below freezing, they turn into tiny ice crystals. Overtime, they get larger as other water droplets freeze to them on contact, forming layers like an onion.  Once a hailstone gets too heavy for the updraft, it falls to the ground.

The stronger the updraft of a storm, the longer a hailstone remains suspended, and the larger it can grow. For a ball of ice to be considered a hailstone, according to the AMS, it has to measure at least 5mm in diameter.

The largest hailstone ever recorded in the US was found in Vivian, South Dakota on June 23, 2010. It measured 7.9 inches in diameter and weighed 1.94 pounds. The updraft supporting it would have had to exceed 150 mph.

Needless to say, hail can cause serious damage to people and property.

Weather Lingo: June Gloom

For most people in the US, the month of June is associated with warm temperatures and abundant sunshine. For parts of coastal California, however, it is a month known for cloudy and relatively cool conditions. This regional phenomenon called “June Gloom” is the result of the interaction of several natural elements, including geography, ocean currents, and weather patterns.

With the California Current running south along the coast from the Gulf of Alaska, the water in the area is cold. Ocean temperatures in the region usually hover in the upper 50s to low 60s during the summer, cooling the air that flows over it.

Another significant factor is the temperature inversion aloft created by the North Pacific High, a semi-permanent area of high pressure. This is part of a larger planetary circulation of air known as a Hadley cell, a current of high altitude air traveling poleward from the tropics. As the air cools, it descends around 30N latitude. It compresses and warms as it sinks, making the air aloft warmer than the cold, moist air at the surface. Since air temperatures normally decrease with height, this situation acts like a cap on the cool air below and prevents it from rising any higher.

When the air under the inversion layer, known as the marine layer, is cooled to the point where the moisture condenses, an expansive sheet of low level stratus clouds form.  The region’s prevailing westerly winds, as well as the sea-breeze circulation that often develops during the summer months, carries these clouds inland.  While they create overcast conditions and some light drizzle, the clouds do not produce any significant rain. They also tend to dissipate by the afternoon as the land heats up.

The thickness and inland extent of the marine layer clouds depend on the strength of the high-pressure system. A stronger high will thin the clouds and keep them confined to the coast. A weaker high with allow the clouds to thicken and move further inland. Separated by only a few miles, the cloud-covered coast can be significantly cooler than sunny areas further east.

These conditions are most common in June, but are not necessarily limited to the month. They have been known to develop in May and last on and off through August. The monikers for these events include “May Gray”, “No Sky July”, and “Fogust”.  However, high pressure usually builds over southern California in July, decreasing the impact of the marine layer or eliminating it altogether.

“June Gloom” clouds along west coast. Credit: NWS/UCSD

What is Normal Weather?

When a significant weather event occurs, we often hear it being compared to “normal”. While this helps put an event into perspective, you may wonder – what is normal?

Climate normals, according to NOAA, are defined as the 30-year average at a given location. They are calculated for several climatological variables, including temperature and precipitation. Updated every decade, the current set of averages is based on the weather from 1981 through 2010.

These statistical measurements also help put climate trends into context. As greenhouse gas emissions continue to spew into the atmosphere, it should not come as a surprise that “normal” these days is warmer than it used to be. For the continental US, according to Climate Central, the average temperature has increased 1.4°F since 1980.

This may seem like a small number, but it is having big impacts. It reflects the increasing number of extremely hot days and the decrease in extremely cold days. Looking at daily temperature records across the US, record highs have outnumbered record lows in 26 of the last 30 years. In 2012, that ratio was as high as 7:1.  These changes and the effects they have are what is meant by human caused climate change ushering in a “new normal”.

Credit: Climate Central

Weather Lingo: Downburst

Thunderstorms pose a number of familiar hazards, such as lightning and hail. The lesser-known downburst, however, is also a serious threat to life and property.

A downburst is a strong downward current of air that causes damaging winds on or near the ground. They initiate high up in the atmosphere, where relatively dry air is entrained inside of an intense thunderstorm. The dry air evaporates some of the storm’s raindrops, which has a cooling effect. Since this cooler air is denser than the warm air that surrounds it, it sinks rapidly toward the surface. When it hits the ground, it spreads out radially – in straight lines in all directions. Reaching speeds in excess of 100mph, a downburst will knock down trees and other obstacles leaving a trail of debris all facing the same direction.

These straight-line wind events, according to the NWS, can vary in size and duration. When they cover an area less than 2.5 miles, they are referred to as microbursts. These typically last between 5 and 15 minutes. Larger events, known as macrobursts, affect an area greater than 2.5 miles and last from 5 to 30 minutes.

While short-lived, these powerful winds can pose a threat to property on the ground as well as airplanes in the process of taking off or landing.

Credit: NWS

Volcanic Smog: Kilauea’s Other Threat

Lava is not the only thing flowing out of the fissures of Kilauea on Hawaii. Sulfur dioxide, a foul-smelling and toxic gas, has also driven people from their homes.

According to the USGS, sulfur dioxide levels near the volcano have been measured above 100 parts per million. That is a level considered dangerous to human health. Noxious on its own, sulfur dioxide is also the main ingredient in volcanic smog. Known as vog in Hawaii, it can have a variety of adverse health effects.

Vog occurs when the sulfur dioxide spewing from a volcano reacts with oxygen, moisture, and other particles in the air in the presence of sunlight. It is considered a form of air pollution, not unlike that given off by power plants burning sulfurous coal. Looking back to December 1948, a similar type of toxic smog caused by unregulated industrial pollution killed 26 people and sickened thousands of others in Donora, PA.

Volcanic smog can irritate the skin, eyes, nose, throat, and lungs. Shortness of breath and dizziness can also occur.  Its effects can be even worse for anyone with respiratory problems or lung disease.

This threat, on top of the flowing lava, has led public health officials to order an evacuation of areas around the fissures, such as the hard hit Leilani Estates.  Other parts of the Big Island, however, have reported moderate to good air quality. This is largely because the region’s prevailing northeast trade winds have been pushing the vog offshore. If those winds slacken and a southeasterly flow emerges, the vog could impact a wider area, including other islands in the Hawaiian chain.

Volcanic eruptions spew gas as well as lava. Credit: GoVisitHawaii

Do April Showers Really Bring May Flowers?

The phrase, “April showers bring May flowers “ has been around for centuries. It is derived from a poem written in the 1500s by Thomas Tusser – an English poet and farmer. This old adage, however, does not hold true in the northeastern United States.

Coming on the heels of the snowy months of winter, April typically produces more rain than snow. Many people, therefore, consider it a rainy month. Since water is necessary for the overall survival of plants, they also associate it with the bloom of flowers in May. Nevertheless, according to botanists, perennials – the plants that go dormant in winter and re-grow in the spring – are more dependent on the soil moisture derived from winter snowmelt and the long-term local precipitation pattern.

In the end, though, temperature is the most significant factor in determining when a flower will bloom. As soon as the weather becomes more spring-like, flowers will start to blossom, regardless of how much it rained in April or whatever the prior month was. That said, a “false spring” – a warm spell that triggers flowering but is followed by a hard frost – can kill the fragile blooms.

It is also worth noting that April is not typically the wettest month of the year for most places in the US. In New York City, July, on average, takes that honor because of the downpours associated with its strong summer thunderstorms.

Peonies in bloom. Credit: Melissa Fleming

First Day of Spring 2018

Today is the Vernal Equinox, the first day of spring in the northern hemisphere. The new season officially begins at 16:15 UTC, which is 12:15 PM Eastern Daylight Time.

Our astronomical seasons are a product of the tilt of the Earth’s axis – a 23.5° angle – and the movement of the planet around the sun. During the spring months, the Earth’s axis is tilted neither toward nor away from the sun. This position distributes the sun’s energy equally between the northern and southern hemispheres.

Since the winter solstice in December, the arc of the sun’s apparent daily passage across the sky has been getting higher and daylight hours have been increasing. Today, the sun appears directly overhead at the equator and we have approximately equal hours of day and night. The word “equinox” is derived from Latin and means “equal night”.

As a transitional season, spring is a time when the chill of winter fades away and the warmth of summer gradually returns. The most noticeable increases in average daily temperature, however, usually lag the equinox by a few weeks.

Earth’s solstices and equinoxes. Image Credit: NASA

How Rainbows Form

St. Patrick’s Day is a holiday often associated with images of rainbows promising a path to a leprechaun’s pot of gold. For most people, however, just spotting a rainbow is enough to brighten a day.

These amazing displays of nature form when raindrops, which act like prisms, scatter sunlight. To see one, an observer must be facing a moisture source like rain or mist with the sun at their back. The sun also needs to be at a low angle in the sky, less than 42° above the horizon. The lower the sun angle, the more of a rainbow’s arc will be visible.

Refraction and reflection inside a raindrop. Credit: Met Office

Passing from the air into a denser raindrop, the light slows and refracts. Since the different wavelengths of light bend by different amounts, the white light is dispersed into the colors of the visible spectrum: red, orange, yellow, green, blue, indigo, and violet. Red, which has a long wavelength, is refracted the least and is always on the top of a single rainbow. Violet, with a shorter wavelength, is refracted the most and is always on the bottom.

The light also needs to reflect off the back wall of the raindrop towards the viewer at the critical angle of 48° before it refracts again when it re-enters the air. A lesser angle will let the light pass through the raindrop and a larger angle will allow the light to reflect straight back out of the drop.

A double rainbow is seen when the light reflects twice inside the raindrop. Since each reflection weakens the intensity of the light, the second bow appears dimmer. The order of the colors is also reversed, with blue on top and red on the bottom.

Rainbow and faint second rainbow form after a rainstorm in Bermuda. Credit: Melissa Fleming

Why Are We Seeing So Many Nor’easters?

The east coast of the United States has been slammed with three nor’easters in just eleven days – March 2, March 7, and March 13. The reason for this barrage of storms involves something called the North Atlantic Oscillation (NAO).

Based in the North Atlantic Ocean, this weather pattern is driven by the pressure differences between the semi-permanent Icelandic Low and Azores/Bermuda High. When the pressure difference between these two systems is low, the NAO is said to be in a negative phase. This means the winds of the jet stream are relatively relaxed and cold air from the north can spill down into the eastern US. The positive phase of NAO is characterized by a strong pressure difference between the two areas and a robust jet stream that keeps cold air bottled up in the northern latitudes.

Three nor’easters in eleven days. Credit: NOAA

Fluctuating between positive and negative, the strength and duration of these phases vary. Since late February, however, a strong negative phase has been locked in place. With an area of high pressure over Greenland, the jet stream is blocked and therefore dipping southward over the eastern US. As the jet stream is essentially a storm track, this pattern has allowed areas of low pressure to be steered over the warm waters of the Gulf Stream off the eastern seaboard, where they have intensified into nor’easters.

In terms of climate change, the connection between the warming Arctic and the storm track across the mid-latitudes is an active area of research. Sea level rise, however, is clearly amplifying the coastal flooding associated with these powerful storms.

NAO Patterns. Credit: NOAA